Accurate maps of road markings are useful for many applications, such as road maintenance, improving navigation, and prediction of upcoming road situations within autonomously driving vehicles. This paper introduces a generic and learning-based system for the recognition of road markings from street-level panoramic images. This system starts with an Inverse Perspective Mapping, followed by segmentation to retrieve road marking candidates. The contours of all found segments are classified, after which a Markov Random Field is applied to adjust the resulting probabilities based on the surrounding context. Finally, the spatial placement of the found individual markings (e.g. shark teeth) is analyzed to retrieve the traffic situations (e.g. priority situations). This system is evaluated for priority, block, striped lines and pedestrian crossing markings, and is able to recognize 80-95% of the individual markings, and about 90% of the occurring situations (e.g. pedestrian crossings).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automated Generation of Road Marking Maps from Street-level Panoramic Images


    Beteiligte:


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    571074 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Exploiting street-level panoramic images for large-scale automated surveying of traffic signs

    Hazelhoff, Lykele / Creusen, Ivo M. / With, Peter H.N. de | Tema Archiv | 2014




    Detection of Street-Parking Vehicles from Panoramic Street Image

    Hirahara, K. / Ikeuchi, K. / IEEE | British Library Conference Proceedings | 2003


    Detection of street-parking vehicles from panoramic street image

    Hirahara, K. / Ikeuchi, K. | Tema Archiv | 2003