The objective of this experimental study is to evaluate the power generation capability of an ethylene–air disk-shaped pressure gain combustor (DPGC). The main content of this paper focuses on discussing the DPGC testing results, consisting of detonation wave dynamics, power generation, and accompanying combustion instabilities. The experiments can be grouped into two stages. In the first stage, the DPGC was tested under atmospheric back condition. Continuous detonation wave dynamics were evaluated among various testing conditions. Evolution of the detonation wave velocity with respect to changes in the equivalence ratio has been discussed. In the second stage of the experiments, the DPGC was tested with a turbocharger installed. Shaft power extracted by the turbocharger turbine from the DPGC exhaust was used as a metric for evaluating the DPGC power output. During the operation of the DPGC and turbocharger, low- and intermediate-frequency combustion instabilities were observed, which coexisted with the high-frequency component associated with the circumferentially propagating detonation wave. The experimental results suggest that the DPGC shows superiority in compactness relative to conventional combustion power systems. However, more improvements need to be made with regard to overall thermal efficiency in order to achieve the benefits from detonation combustion.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Operation and Power Generation of a Disk-Shaped Pressure Gain Combustor


    Contributors:

    Published in:

    Publication date :

    2023-11-01




    Type of media :

    Conference paper , Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    WAVE DYNAMICS, POWER PRODUCTION AND COMBUSTION INSTABILITIES OF A DISK-SHAPED PRESSURE GAIN COMBUSTOR

    Huang, Xin / Chang, Po-Hsiung / Li, Jiun-Ming et al. | TIBKAT | 2021


    Stacked-Disk Combustor

    Ingle, Walter B. | NTRS | 1988



    Pressure Gain Combustor Component Viability Assessment Based on Initial Testing

    Snyder, Philip / Elharis, Tarek / Wijeyakulasuriya, Sameera et al. | AIAA | 2011