Diese Dissertation soll den Weg zur Entwicklung einer zukünftigen Generation hochqualifizierter autonomer Fahrzeuge (HSAV) aufzeigen. Kurz gesagt, es ist beabsichtigt, dass zukünftige HSAVs fortgeschrittene Fahrfähigkeiten aufweisen können, um das Fahrzeug trotz der Fahrbedingungen (Grenzen des Fahrverhaltens) oder Umgebungsbedingungen (z. B. Oberflächen mit geringer Manövrierfähigkeit) in stabilen Grenzen zu halten. Aktuelle Forschungslinien zu intelligenten Systemen weisen darauf hin, dass ein solches fortschrittliches Fahrverhalten mit Hilfe von Expertensystemen realisiert werden kann, die in der Lage sind, die aktuellen Fahrzeugzustände zu überwachen, die Straßenreibungsbedingungen kennenzulernen und ihr Verhalten in Abhängigkeit von der ermittelten Situation anzupassen. Solche Anpassungsfähigkeiten werden häufig von professionellen Motorsportfahrern gezeigt, die ihr Fahrverhalten in Abhängigkeit von der Straßengeometrie oder den Reifenreibungsmerkmalen abstimmen. Auf dieser Grundlage werden Expertensysteme mit fortschrittlichen Fahrfunktionen vorgeschlagen, die auf den Techniken hochqualifizierter Fahrer basieren (z. B. hohe Schlupfregelung), um den Betriebsbereich autonomer Fahrzeuge zu erweitern und eine Automatisierung auf hohem Niveau zu erreichen (z. B. Verbesserung der Manövrierfähigkeit auf niedrigem Niveau) -haftende Oberflächen). Um diese Expertensysteme zu konzipieren, werden zwei große Forschungsthemen in dieser Dissertation ausführlich behandelt: Fahrdynamik-virtuelle Wahrnehmung und fortschrittliche Bewegungssteuerung. In Bezug auf erstere wird eine umfassende Forschung durchgeführt, um virtuelle Sensoren vorzuschlagen, die in der Lage sind, die Bewegungszustände der Fahrzeugebenen abzuschätzen und die Straßenreibungseigenschaften aus leicht verfügbaren Messungen kennenzulernen. In Bezug auf die Bewegungssteuerung werden Systeme zur Nachahmung fortgeschrittener Fahrfähigkeiten und zum Erzielen einer robusten Wegfolgefähigkeit angestrebt. Eine optimale koordinierte Wirkung verschiedener Fahrgestellsubsysteme (z. B. Lenkung und individuelle Drehmomentsteuerung) wird durch die Annahme eines zentralisierten, mehrfach betätigten Systemrahmens angestrebt. Die in dieser Arbeit entwickelten virtuellen Sensoren wurden experimentell mit dem Vehicle-Based Objective Tyre Testing (VBOTT) - Prüfstand von JAGUAR LAND ROVER und den fortschrittlichen Bewegungssteuerungsfunktionen mit dem mehrfach betätigten Bodenfahrzeug "DevBot" von ARRIVAL und ROBORACE validiert.


    Access

    Download


    Export, share and cite



    Title :

    Vehicle dynamics virtual sensing and advanced motion control for highly skilled autonomous vehicles


    Contributors:

    Publication date :

    2019


    Size :

    1 Online-Ressource (192 Blätter)


    Remarks:

    Diagramme, Illustrationen (teilweise farbig)


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629.276
    RVK:    ZO 4660






    OBJECT MOTION PREDICTION AND VEHICLE CONTROL FOR AUTONOMOUS VEHICLES

    ANSARI ALEXANDER RASHID / STYLER ALEXANDER DAVID | European Patent Office | 2023

    Free access

    Autonomous vehicle advanced sensing and response

    LAKSHAMANAN BARATH / HURD LINDA L / ASHBAUGH BEN J et al. | European Patent Office | 2019

    Free access