The conceptual design phase for the development of new and revolutionary aircraft should include both low- and high-fidelity multidisciplinary engineering analyses to enable reasonable computational cost and accuracy tradeoffs. Multifidelity locally optimized surrogate models can be employed to fuse the multifidelity information to give an accurate representation of the underlying design space. These surrogates can be further enhanced with derivative information and augmented with dynamic training point selection to reduce overall computational cost. In this paper, a framework for multifidelity locally optimized surrogate models is developed, and the superior accuracy for the same computational cost or cheaper cost for the same accuracy compared to standard single-fidelity global surrogate models is demonstrated via analytic test functions. The multifidelity locally optimized surrogate models are also applied to the creation of an aerodynamic database involving the steady turbulent flow around a NACA 00xx airfoil, where the influence of Mach number, angle of attack, and thickness-to-chord ratio variations on the lift and drag coefficient are studied.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Construction of Dynamic Multifidelity Locally Optimized Surrogate Models


    Contributors:

    Published in:

    AIAA Journal ; 55 , 9 ; 3169-3179


    Publication date :

    2017-09-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Improving Bayesian networks multifidelity surrogate construction with basis adaptation

    Zeng, Xiaoshu / Geraci, Gianluca / Gorodetsky, Alex et al. | AIAA | 2023



    Multifidelity Surrogate Based on Single Linear Regression

    Zhang, Yiming / Kim, Nam H. / Park, Chanyoung et al. | AIAA | 2018



    AI-Based Multifidelity Surrogate Models to Develop Next Generation Modular UCAVs

    Karali, Hasan / Inalhan, Gokhan / Tsourdos, Antonios | AIAA | 2023