This paper presents the baseline design of a 34,000-tonne subsea shuttle tanker (SST). The SST is proposed as an alternative to subsea pipelines and surface tankers for the transportation of liquid carbon dioxide (CO2) from existing offshore/land facilities to marginal subsea fields. In contrast to highly weather-dependent surface tanker operations, the SST can operate in any condition underwater. The SST is an electric-powered autonomous underwater vehicle with a length and beam of 164 m and 17 m, respectively. It has a cargo carrying capacity of 16,362 m3. This capacity is sufficient to allow the SST to fulfil the annual storage demands of ongoing carbon capture and storage (CCS) projects in Norway. It travels with a slow speed of 6 knots at 70 m constant water depth for maximum energy efficiency and offloads CO2 via a connected coupling to the subsea well where CO2 is directly injected. To be economically attractive, the SST has a high payload of 50% displacement which makes a low structural weight design extremely crucial. This is achieved by employing a double hull design for the SST with active pressure compensating systems to cope with the large collapse pressure loads underwater. ; publishedVersion


    Access

    Download


    Export, share and cite



    Title :

    Baseline design of a subsea shuttle tanker system for liquid carbon dioxide transportation


    Contributors:
    Ma, Yucong (author) / Xing, Yihan (author) / Ong, Muk Chen (author) / Hemmingsen, Tor (author)

    Publication date :

    2021-11-01


    Remarks:

    cristin:1950429
    240 ; Ocean Engineering ; 109891



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629




    Shuttle Tanker

    HAN SOLYOUNG / KIM JOOSUNG | European Patent Office | 2021

    Free access

    Shuttle Tanker

    European Patent Office | 2024

    Free access

    Shuttle Tanker

    HEE MOON CHAE / JEONGNAM KIM / BYUNGYOON HO et al. | European Patent Office | 2022

    Free access

    SHUTTLE TANKER RISK

    Spires, J. B. / McDonnell, R. / Society of Naval Architects and Marine Engineers | British Library Conference Proceedings | 2000


    SHUTTLE TANKER RISK

    Spires, J. / McDonnell, R. / Society of Naval Architects and Marine Engineers | British Library Conference Proceedings | 2000