Challenging space missions include those at very low altitudes, where the atmosphere is the source of aerodynamic drag on the spacecraft, that finally defines the mission’s lifetime, unless a way to compensate for it is provided. This environment is named Very Low Earth Orbit (VLEO) and it is defined for \(h<{450}{\mathrm{km}}\). In addition to the spacecraft’s aerodynamic design, to extend the lifetime of such missions, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP), in which the propulsion system collects the atmospheric particles to be used as propellant for an electric thruster. The system could remove the requirement of carrying propellant on-board, and could also be applied to any planetary body with atmosphere, enabling new missions at low altitude ranges for longer missions’ duration. One of the objectives of the H2020 DISCOVERER project, is the development of an intake and an electrode-less plasma thruster for an ABEP system. This article describes the characteristics of intake design and the respective final designs based on simulations, providing collection efficiencies up to \(94\%\). Furthermore, the radio frequency (RF) Helicon-based plasma thruster (IPT) is hereby presented as well, while its performances are being evaluated, the IPT has been operated with single atmospheric species as propellant, and has highlighted very low input power requirement for operation at comparable mass flow rates \(P\sim {60}{\mathrm{w}}\).


    Access

    Download


    Export, share and cite



    Title :

    Design of an intake and a thruster for an atmosphere-breathing electric propulsion system


    Contributors:

    Publication date :

    2022-05-27


    Remarks:

    Romano , F , Herdrich , G , Chan , Y , Crisp , N H , Roberts , P C E , Holmes , B E A , Edmondson , S , Haigh , S , Macario-rojas , A , Oiko , V T A , Sinpetru , L A , Smith , K , Becedas , J , Sulliotti-linner , V , Bisgaard , M , Christensen , S , Hanessian , V , Jensen , T K , Nielsen , J , Fasoulas , S , Traub , C , García-almiñana , D , Rodríguez-donaire , S , Sureda , M , Kataria , D , Belkouchi , B , Conte , A , Seminari , S & Villain , R 2022 , ' Design of an intake and a thruster for an atmosphere-breathing electric propulsion system ' , CEAS Space Journal . https://doi.org/10.1007/s12567-022-00452-1



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    DDC:    530 / 629



    INTAKE SYSTEM FOR AN ATMOSPHERE BREATHING ELECTRIC THRUSTER, SPACECRAFT

    QUANG DAMIEN LE / ALSALIHI ZUHEYR / PARODI PIETRO | European Patent Office | 2021

    Free access

    Intake system for an atmosphere breathing electric thruster for a spacecraft

    QUANG DAMIEN LE / ALSALIHI ZUHEYR / PARODI PIETRO | European Patent Office | 2024

    Free access

    INTAKE SYSTEM FOR AN ATMOSPHERE BREATHING ELECTRIC THRUSTER FOR A SPACECRAFT

    QUANG DAMIEN LE / ALSALIHI ZUHEYR / PARODI PIETRO | European Patent Office | 2021

    Free access

    INDUCTIVE PLASMA THRUSTER (IPT) DESIGN FOR AN ATMOSPHERE-BREATHING ELECTRIC PROPULSION SYSTEM (ABEP)

    Romano, Francesco / Herdrich, Georg / Roberts, Peter C. E | TIBKAT | 2020