Presentado al IFAC/IMS celebrado en Alicante en 2007. ; This paper presents a relational positioning methodology for flexibly and intuitively specifying offline programmed robot tasks, and for assisting the execution of teleoperated tasks featuring precise or repetitive movements. By formulating an object positioning problem in terms of symbolic geometric constraints, the movements of an object can be restricted totally or partially, independently of its initial configuration. To solve the problem, a 3D sequential geometric constraint solver called PMF –Positioning Mobile with respect to Fixed– has been developed. PMF exploits the fact that in geometric constraint sets the rotational component can often be decoupled from the translational one and solved independently. ; This work was partially supported by the CICYT project DPI2005-00112. ; Peer Reviewed


    Access

    Download


    Export, share and cite



    Title :

    Robot task specification and execution through relational positioning


    Contributors:

    Publication date :

    2007-01-01


    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    004 / 629



    Tactical mobile robot mission specification and execution

    Arkin, Ronald C. / Collins, Thomas R. / Endo, Yochiro | SPIE | 1999


    Reactive task execution of a mobile robot

    Riekki, J. (Jukka) | BASE | 1998

    Free access

    PLUMMRS: Towards Safe Multi-robot Task Planning and Execution

    Quispe, Ana Huamán / Hart, Stephen / Gee, Seth | TIBKAT | 2022


    PLUMMRS: Towards Safe Multi-robot Task Planning and Execution

    Huamán Quispe, Ana / Hart, Stephen / Gee, Seth | Springer Verlag | 2022


    Task Execution

    Vakanski, Aleksandar / Janabi‐Sharifi, Farrokh | Wiley | 2017