ABNO's OAM Handler is extended with big data analytics capabilities to anticipate traffic changes in volume and direction. Predicted traffic is used to trigger virtual network topology re-optimization. When the virtual topology needs to be reconfigured, predicted and current traffic matrices are used to find the optimal topology. A heuristic algorithm to adapt current virtual topology to meet both actual demands and expected traffic matrix is proposed. Experimental assessment is carried out on UPC's SYNERGY testbed. ; Peer Reviewed ; Postprint (published version)
Big data analytics for the virtual network topology reconfiguration use case
2016-01-01
Miscellaneous
Electronic Resource
English
Optimization , Matrix algebra , Optical communications , Telecommunication traffic , Data analytics , Experimental assessment , VNT reconfiguration , Topology , Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telecomunicació òptica , Fiber optic networks , Virtual topologies , Optimal topologies , Reconfigurable hardware , Transparent optical networks , ABNO , Comunicacions òptiques , Heuristic algorithms , Traffic monitoring , Virtual network topology
DDC: | 629 |
Virtual network topology adaptability based on data analytics for traffic prediction
BASE | 2017
|British Library Online Contents | 2014
|Monitoring and Data Analytics-triggered reconfiguration in partially disaggregated optical networks
BASE | 2020
|