Abstract Cooperative perception plays a vital role in extending a vehicle’s sensing range beyond its line-of-sight. However, exchanging raw sensory data under limited communication resources is infeasible. Towards enabling an efficient cooperative perception, vehicles need to address fundamental questions such as: what sensory data needs to be shared? at which resolution? with which vehicles? In this view, this paper proposes a reinforcement learning (RL)-based vehicular association, resource block (RB) allocation, and content selection of cooperative perception messages by utilizing a quadtree-based point cloud compression mechanism. Simulation results show the ability of the RL agents to efficiently learn the vehicles’ association, RB allocation and message content selection that maximizes the fulfillment of the vehicles in terms of the received sensory information.


    Access

    Download


    Export, share and cite



    Title :

    V2V cooperative sensing using reinforcement learning with action branching



    Publication date :

    2021-01-01


    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Vehicular cooperative perception through action branching and federated reinforcement learning

    Abdel-Aziz, M. K. (Mohamed K.) / Perfecto, C. (Cristina) / Samarakoon, S. (Sumudu) et al. | BASE | 2022

    Free access

    Vehicular Cooperative Perception Through Action Branching and Federated Reinforcement Learning

    Abdel-Aziz, Mohamed K. / Perfecto, Cristina / Samarakoon, Sumudu et al. | ArXiv | 2020

    Free access

    SELECTING ACTION SLATES USING REINFORCEMENT LEARNING

    SUNEHAG PETER GORAN | European Patent Office | 2023

    Free access


    Cooperative Perception with Deep Reinforcement Learning for Connected Vehicles

    Aoki, Shunsuke / Higuchi, Takamasa / Altintas, Onur | IEEE | 2020