Respiratory motion poses significant challenges in image-guided interventions. In emerging treatments such as MR-guided HIFU or MR-guided radiotherapy, it may cause significant misalignments between interventional road maps obtained pre-procedure and the anatomy during the treatment, and may affect intra-procedural imaging such as MR-thermometry. Patient specific respiratory motion models provide a solution to this problem. They establish a correspondence between the patient motion and simpler surrogate data which can be acquired easily during the treatment. Patient motion can then be estimated during the treatment by acquiring only the simpler surrogate data. In the majority of classical motion modelling approaches once the correspondence between the surrogate data and the patient motion is established it cannot be changed unless the model is recalibrated. However, breathing patterns are known to significantly change in the time frame of MR-guided interventions. Thus, the classical motion modelling approach may yield inaccurate motion estimations when the relation between the motion and the surrogate data changes over the duration of the treatment and frequent recalibration may not be feasible. We propose a novel methodology for motion modelling which has the ability to automatically adapt to new breathing patterns. This is achieved by choosing the surrogate data in such a way that it can be used to estimate the current motion in 3D as well as to update the motion model. In particular, in this work, we use 2D MR slices from different slice positions to build as well as to apply the motion model. We implemented such an autoadaptive motion model by extending our previous work on manifold alignment. We demonstrate a proof-of-principle of the proposed technique on cardiac gated data of the thorax and evaluate its adaptive behaviour on realistic synthetic data containing two breathing types generated from 6 volunteers, and real data from 4 volunteers. On synthetic data the autoadaptive motion model yielded 21.45% ...


    Access

    Download


    Export, share and cite



    Title :

    Autoadaptive motion modelling for MR-based respiratory motion estimation


    Contributors:
    Baumgartner, CF (author) / Kolbitsch, C (author) / McClelland, JR (author) / Rueckert, D (author) / King, AP (author)

    Publication date :

    2017-01-01


    Remarks:

    Medical Image Analysis , 35 pp. 83-100. (2017)


    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Autoadaptive motion modelling for MR-based respiratory motion estimation

    Baumgartner, Christian F. / Kolbitsch, Christoph / McClelland, Jamie R. et al. | BASE | 2017

    Free access

    Mise en oeuvre d'absorption active autoadaptive

    Sunyach,M. | Automotive engineering | 1989



    Joint cardiac and respiratory motion estimation for motion-corrected cardiac PET-MR

    Kolbitsch, Christoph / Neji, Radhouene / Fenchel, Matthias et al. | BASE | 2018

    Free access

    MOTION ESTIMATION SYSTEM AND MOTION ESTIMATION METHOD

    INOUE YASUSHI / NISHIYAMA NORI / TERAGUCHI TAKEHITO et al. | European Patent Office | 2021

    Free access