Background: Accurate gait event detection is crucial to analyze pathological gait data. Existing methods relying on marker trajectories were reported to be sensitive to different gait patterns, which is an inherent characteristic of pathologic gait. Research question: We propose a new approach based on auto-selection among different methods, original and taken from the literature. Methods: The auto-selection approach evaluates the accuracy of the implemented methods for both foot-strike and foot-off on all available events detected by the force platforms, independently, and automatically selects the most accurate one to be used on the whole gait session. Pathological gait data from 272 patients with cerebral palsy and idiopathic toe walking were used retrospectively to evaluate the accuracy of this approach. Three methods previously reported in literature together with original methods developed based on auto-correlation were implemented and constituted our auto-selection approach. The accuracy and precision were compared to a recently reported method based on deep events as it is the method that showed the best performance in literature. Results: Results showed that the proposed approach outperformed all implemented methods used alone, with an accuracy of - 2.0 ms and - 0.9 ms for foot strike and foot-off, respectively. Additionally, more than 99% and 93% of events detected were detected within 20 ms and 10 ms of accuracy, respectively. Significance: The proposed methodology has demonstrated to improve the accuracy and precision of gait event detection in gait analysis.


    Access

    Download


    Export, share and cite



    Title :

    Automatic gait event detection in pathologic gait using an auto-selection approach among concurrent methods


    Contributors:

    Publication date :

    2022-01-01


    Remarks:

    unige:164773
    ISSN: 0966-6362 ; Gait & posture, vol. 96 (2022) p. 271-274


    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Automatic detection of abnormal gait

    Bauckhage, C. / Tsotsos, J. K. / Bunn, F. E. | British Library Online Contents | 2009


    Methods and devices for automatic gait transition

    RIZZI ALFRED ANTHONY / BLANKESPOOR KEVIN / MALCHANO MATTHEW DAVID et al. | European Patent Office | 2018

    Free access

    Gait recognition using a few gait frames.

    Yao, L / Kusakunniran, W / Wu, Q et al. | BASE | 2021

    Free access

    Gait Verification Using Probabilistic Methods

    Bazin, Alex I. / Nixon, Mark S. | IEEE | 2005


    Adaptive real-time tool for human gait event detection using a wearable gyroscope

    Félix, Paulo / Figueiredo, Joana / Santos, Cristina et al. | BASE | 2018

    Free access