This is a post-peer-review, pre-copyedit version of an article published in "TOP". The final authenticated version is available online at: https://doi.org/10.1007/s11750-017-0464-1 ; Multinomial values were previously introduced by one of the authors in reliability and extended later to all cooperative games. Here, we present for this subfamily of probabilistic values three new results, previously stated only for binomial semivalues in the literature. They concern the dimension of the subspace spanned by the multinomial values and two characterizations: one, individual, for each multinomial value; another, collective, for the whole subfamily they form. Finally, an application to simple games is provided ; Peer Reviewed ; Postprint (author's final draft)
A note on multinomial probabilistic values
2018-04-01
Article (Journal)
Electronic Resource
English
Jocs cooperatius (Matemàtica) , Teoria de , Probabilistic value , Shapley value , Binomial semivalue , Cooperative games (Mathematics) , Jocs , Game theory , social and behavioral sciences::91A Game theory , Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Teoria de jocs , Classificació AMS::91 Game theory , economics , Cooperative game
DDC: | 629 |
Some properties for probabilistic and multinomial (probabilistic) values on cooperative games
BASE | 2016
|NTRS | 1971
|Transportation Research Record | 2009
|Wiley | 1993
|Reconsidering the multinomial probit model
Elsevier | 1991
|