Autonomous UAV cruising is gaining attention dueto its flexible deployment in remote sensing, surveillance, andreconnaissance. A critical challenge in data collection with theautonomous UAV is the buffer overflows at the ground sensorsand packet loss due to lossy airborne channels. Trajectoryplanning of the UAV is vital to alleviate buffer overflows as wellas channel fading. In this work, we propose a Deep DeterministicPolicy Gradient based Cruise Control (DDPG-CC) to reducethe overall packet loss through online training of headings andcruise velocity of the UAV, as well as the selection of the groundsensors for data collection. Preliminary performance evaluationdemonstrates that DDPG-CC reduces the packet loss rate byunder 5% when sufficient training is provided to the UAV. ; This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); also by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by national funds through the FCT, within project ARNET (POCI01-0145-FEDER-029074). ; info:eu-repo/semantics/publishedVersion
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
2021-10-04
Conference paper
Electronic Resource
English
DDC: | 629 |
Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning
British Library Conference Proceedings | 2022
|Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning
British Library Conference Proceedings | 2022
|Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning
British Library Conference Proceedings | 2022
|Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning
British Library Conference Proceedings | 2022
|Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning
SAE Technical Papers | 2022
|