This article proposes an architecture for an intelligent surveillance system, where the aim is to mitigate the burden on humans in conventional surveillance systems by incorporating intelligent interfaces, computer vision, and autonomous mobile robots. Central to the intelligent surveillance system is the application of research into planning and decision making in this novel context. In this article, we describe the robot surveillance decision problem and explain how the integration of components in our system supports fully automated decision making. Several concrete scenarios deployed in real surveillance environments exemplify both the flexibility of our system to experiment with different representations and algorithms and the portability of our system into a variety of problem contexts. Moreover, these scenarios demonstrate how planning enables robots to effectively balance surveillance objectives, autonomously performing the job of human patrols and responders. ; This work was partially supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT), through strategic funding for Institute for Systems and Robotics/Laboratory for Robotics and Engineering Systems (ISR/LARSyS) under grant PEst-OE/EEI/LA0021/2013 and through the Carnegie Mellon Portugal Program under grant CMU-PT/SIA/0023/2009. This study also received national funds through the FCT, with reference UID/CEC/S0021/2013, and through grant FCT UID/EEA/50009/2013 of ISR/LARSyS.
Autonomous surveillance robots: a decision-making framework for networked multiagent systems
2017-09-01
AR/0000020525
Article (Journal)
Electronic Resource
English
DDC: | 629 |
An Active-Passive Networked Multiagent Systems Approach to Environment Surveillance (AIAA 2015-2004)
British Library Conference Proceedings | 2015
|Multiagent cooperative decision making based on independent learning
British Library Online Contents | 2002
|