Die Bewegungsplanung für automatisierte Fahrzeuge (AVs) in gemischtem Verkehr ist eine herausfordernde Aufgabe. Hierbei bezeichnet gemischter Verkehr, Verkehr bestehend aus von Menschen gefahrenen Fahrzeugen sowie automatisierten Fahrzeugen. Um die Komplexität der Aufgabe zu reduzieren, verwenden state-of-the-art Planungsansätze oft die vereinfachende Annahme, dass das zukünftige Verhalten umliegender Fahrzeuge unabhängig vom Plan des AVs vorhergesagt werden kann. Während die Trennung von Prädiktion und Planung für viele Verkehrssituationen eine hilfreiche Vereinfachung darstellt, werden hierbei Interaktionen zwischen den Verkehrsteilnehmern ignoriert, was besonders in interaktiven Verkehrssituationen zu suboptimalem, übermäßig konservativem Fahrverhalten führen kann. In dieser Arbeit werden zwei interaktionsbewusste Bewegungsplanungsalgorithmen vorgeschlagen, die in der Lage sind übermäßig konservatives Fahrverhalten zu reduzieren. Der Kernaspekt dieser Algorithmen ist, dass Prädiktion und Planung gleichzeitig gelöst werden. Mit diesen Algorithmen können anspruchsvolle Fahrmanöver, wie z. B. das Reißverschlussverfahren in dichtem Verkehr, durchgeführt werden, die mit state-of-the-art Planungsansätzen nicht möglich sind. Der erste Algorithmus basiert auf Methoden der Multi-Agenten-Planung. Interaktionen zwischen Verkehrsteilnehmern werden durch Optimierung gekoppelter Trajektorien mittels einer gemeinsamen Kostenfunktion approximiert. Das Kernstück des Algorithmus ist eine neuartige Multi-Agenten-Trajektorienplanungsformulierung, die auf gemischt-ganzzahliger quadratischer Programmierung (MIQP) basiert. Die Formulierung garantiert global optimale Lösungen und ist somit in der Lage das kombinatorische Problem zu lösen, welches kontinuierliche Methoden auf lokal optimale Lösungen beschränkt. Desweiteren kann durch den vorgestellten Ansatz ein manöverneutrales Verhalten erzeugt werden, das Manöverentscheidungen in ungewissen Situationen aufschieben kann. Der zweite Ansatz formuliert Interaktionen zwischen einem menschlichen Fahrer und einem AV als ein Stackelberg-Spiel. Im Gegensatz zu bestehenden Arbeiten kann der Algorithmus allgemeine nichtlineare Zustands- und Eingabebeschränkungen berücksichtigen. Desweiteren führen wir Mechanismen zur Integration von Kooperation und Rücksichtnahme in die Planung ein. Damit wird übermäßig aggressives Fahrverhalten verhindert, was in der Literatur als ein Problem interaktionsbewusster Planungsmethoden identifiziert wurde. Die Wirksamkeit, Robustheit und Echtzeitfähigkeit des Algorithmus wird durch numerische Experimente gezeigt.
Interaction-Aware Motion Planning for Automated Vehicles
2023
Miscellaneous
Electronic Resource
English
Probabilistic Motion Planning for Automated Vehicles
GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2021
|