This research employed machine learning approaches to classify acceptable or non-acceptable particulate matter (PM2.5) concentrations using a dataset that was obtained from the Nairobi expressway road corridor. The dataset contained air quality data, traffic volume, and meteorological data. The Boruta Algorithm (BA) was utilized in conjunction with the Random Forests (RF) classifier to select the most appropriate features from the dataset. The findings of the BA analysis indicated that humidity was the most influential factor in determining air quality. This was closely followed by the variables of ‘day_of_week’ and the volume of traffic bound for Nairobi. The temperature of the site was determined to have a lower significance. The comparison among different machine learning classifiers for the classification of acceptable and unacceptable PM2.5 concentrations revealed that the Extreme Gradient Boosting (XGBoost) classifier displayed superior performance in terms of Sensitivity (0.774), Specificity (0.943), F1-Score (0.833), and AU-ROC (0.874). The Binary Logistic Regression (BLR) model demonstrated comparatively poorer performance in terms of Sensitivity (0.244), Specificity (0.614), F1-Score (0.455), and AU-ROC (0.508) when compared to other ML models. The prediction of PM2.5 has the potential to provide valuable insights to transport policymakers in their deliberations on urban transport policy formulation.
Classification of Particulate Matter (PM2.5) Concentrations Using Feature Selection and Machine Learning Strategies
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Predicting Near-Road PM2.5 Concentrations
Transportation Research Record | 2009
|Particulate matter mass concentrations produced from pavement surface abrasion
DOAJ | 2017
|Driver Classification of Shifting Strategies Using Machine Learning Algorithms
SAE Technical Papers | 2020
|