At present, China is in a period of steady development of highways. At the same time, traffic safety issues are becoming increasingly serious. Data mining technology is an effective method for analysing traffic accidents. In-depth information mining of traffic accident data is conducive to accident prevention and traffic safety management. Based on the data of Wenli highway traffic accidents from 2006 to 2013, this study selected factors including time factor, linear factor and driver characteristics as research indicators, and established the decision tree using C4.5 algorithm in WEKA to explore the impact of various factors on the accident. According to the degree of contribution of each variable to the classification effect of the model, various modes affecting the type of the accident are obtained and the overall prediction accuracy is about 80%.


    Access

    Download


    Export, share and cite



    Title :

    Traffic accident analysis based on C4.5 algorithm in WEKA


    Contributors:
    Li Jiajia (author) / He Jie (author) / Liu Ziyang (author) / Zhang Hao (author) / Zhang Chen (author)


    Publication date :

    2019




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown





    Predictive Hybridization Model integrating Modified Genetic Algorithm (MGA) and C4.5

    Bustillo, James Cloyd M. / Medina, Ruji P. / Sison, Ariel M. et al. | IEEE | 2022



    Mobile WEKA as Data Mining Tool on Android

    Liu, Pengfei / Chen, Yanhua / Tang, Wulei et al. | Springer Verlag | 2012


    Traffic Accident Analysis System

    Seo, T. / Akagi, Y. / ASCE | British Library Conference Proceedings | 1993