Machine-learning technology powers many aspects of modern society. Compared to the conventional machine learning techniques that were limited in processing natural data in the raw form, deep learning allows computational models to learn representations of data with multiple levels of abstraction. In this study, an improved deep learning model is proposed to explore the complex interactions among roadways, traffic, environmental elements, and traffic crashes. The proposed model includes two modules, an unsupervised feature learning module to identify functional network between the explanatory variables and the feature representations and a supervised fine tuning module to perform traffic crash prediction. To address the unobserved heterogeneity issues in the traffic crash prediction, a multivariate negative binomial (MVNB) model is embedding into the supervised fine tuning module as a regression layer. The proposed model was applied to the dataset that was collected from Knox County in Tennessee to validate the performances. The results indicate that the feature learning module identifies relational information between the explanatory variables and the feature representations, which reduces the dimensionality of the input and preserves the original information. The proposed model that includes the MVNB regression layer in the supervised fine tuning module can better account for differential distribution patterns in traffic crashes across injury severities and provides superior traffic crash predictions. The findings suggest that the proposed model is a superior alternative for traffic crash predictions and the average accuracy of the prediction that was measured by RMSD can be improved by 84.58% and 158.27% compared to the deep learning model without the regression layer and the SVM model, respectively.


    Access

    Download


    Export, share and cite



    Title :

    An Improved Deep Learning Model for Traffic Crash Prediction


    Contributors:
    Chunjiao Dong (author) / Chunfu Shao (author) / Juan Li (author) / Zhihua Xiong (author)


    Publication date :

    2018




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Deep hybrid learning framework for spatiotemporal crash prediction using big traffic data

    Mohammad Tamim Kashifi / Mohammed Al-Turki / Abdul Wakil Sharify | DOAJ | 2023

    Free access

    BConvLSTM: a deep learning-based technique for severity prediction of a traffic crash

    Vinta, Surendra Reddy / Rajarajeswari, Pothuraju / Kumar, M. Vijay et al. | Taylor & Francis Verlag | 2024


    TSDCN: Traffic safety state deep clustering network for real‐time traffic crash‐prediction

    Li, Haitao / Bai, Qiaowen / Zhao, Yonghua et al. | Wiley | 2021

    Free access

    TSDCN: Traffic safety state deep clustering network for real‐time traffic crash‐prediction

    Haitao Li / Qiaowen Bai / Yonghua Zhao et al. | DOAJ | 2021

    Free access