This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard sub-path is predicted employing a properly trained neural network. The final flight-time over the complete path is computed summing the partial results related to the standard sub-paths. Real drone flight-tests were performed in order to realize an adequate database needed to train the adopted neural network as a classifier, employing the Bayesian regularization backpropagation algorithm as training function. For the network, the relative angle between two sides of a corner and the wind condition are the inputs, while the flight-time over the corner is the output parameter. Then, generic paths were designed and performed to test the method. The total flight-time as resulting from the drone telemetry was compared with the flight-time predicted by the developed method based on machine learning techniques. At the end of the paper, the proposed method was demonstrated as effective in predicting possible collisions among drones flying intersecting paths, as a possible application to support the development of unmanned traffic management procedures.


    Access

    Download


    Export, share and cite



    Title :

    Drone Trajectory Segmentation for Real-Time and Adaptive Time-Of-Flight Prediction




    Publication date :

    2021




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Real-Time Drone (UAV) Trajectory Generation and Tracking by Optical Flow

    Mora Granillo, Omar Daniel / Zamudio Beltran, Zizilia | IEEE | 2018



    Real-Time Flight Trajectory Optimization and its Verification in Flight

    Tsuchiya, Takeshi / Miwa, Masahiro / Suzuki, Shinji et al. | AIAA | 2009


    Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems

    M. Larsen / R. W. Beard / T. W. McLain | NTIS | 2006


    AI 3D Drone real-time control and AI-based 3D flight control

    JEONG HO / KIM DAE SUNG / CHUNG CHUL HOON et al. | European Patent Office | 2024

    Free access