The purpose of this study was to analyze the possibility of using combat aircraft including decommissioned as a platform for launching and carrying space rockets with satellites (nano and microsatellites). Thus, an airborne-launcher-to-space-system may be attractive to countries without ground-based space rocket launch sites.

    Design/methodology/approach

    For considered launch-to-orbit system configurations, simulations of space rocket effects on aerodynamic characteristics were performed using computational fluid dynamics (CFD ANSYS Fluent) methods. In addition, experimental studies were performed in a wind tunnel to verify the numerical simulations. Discrete models of the aircraft structure were developed for analysis using finite element method (FEM). The analysis of simulated structural properties of the models was carried out to test its stiffness and mass characteristics important for solving the static and dynamic problems of the structure. The validation analyses of aircraft models were based on mass distribution estimation and matching the stiffness properties of the individual airframe structural assemblies.

    Findings

    The results of numerical analyses and tunnel tests indicate that the influence of carrier rockets on the change of aerodynamic and strength characteristics of the airframe is rather negligible. The aircraft can be used as launching platforms for space rockets. Simulations have indicated that the aircraft will successfully perform a mission of taking away and launching a rocket of at least about 1,000 kg total weight with a 10 kg space payload included.

    Practical implications

    The combat aircraft can be used as launch platforms for space rockets, and the air/rocket set can become the equivalent of responsive space assets for countries with small space budgets.

    Originality/value

    The work presents original results obtained by the authors during a preliminary design of a low-cost satellite launch system consisting of a carrier aircraft and a space rocket orbiter. The possibility of using decommissioned combat aircraft as air-launch-to-orbit platforms was taken into consideration. In the absence of aircraft design documentation, reverse engineering methods and techniques were used to develop aircraft geometry and airframe strength structure. Use of CFD, FEM and simulation methods to evaluate system capabilities was demonstrated. Numerical results from CFD simulations were finally verified in experimental tests.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Combat aircraft as airborne launch platforms for space rockets



    Published in:

    Publication date :

    2022-12-29


    Size :

    8 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Decommissioned Fighters as Airborne Launch Platforms for Space Operations

    Olejnik, Aleksander / Kachel, Stanisław / Zalewski, Piotr et al. | ASCE | 2024


    Aerospike Rockets for Increased Space Launch Capability

    C. Hartsfield / R. D. Branam / J. Hall et al. | NTIS | 2011


    Aerospike Rockets for Increased Space Launch Capability

    Hartsfield, Carl | Online Contents | 2011


    Design of rockets and space launch vehicles

    Edberg, Don / Costa, Guillermo | TIBKAT | 2020


    CONFIGURATION OF A CARRIER AIRCRAFT FOR THE VERTICAL AIR LAUNCH OF SPACE ROCKETS

    GALEEV DAMIR | European Patent Office | 2017

    Free access