Abstract The invention provides an airspace complexity evaluation system based on deep learning, including a data acquisition module, a data processing module, a complexity evaluation module and an early warning module which are sequentially connected. Specifically, the data acquisition module is used to collect, organize and monitor the data that affect the complexity of the sector in real time; the data processing module is used for normalizing above collected data, so as to eliminate dimensional differences among various detection indexes of the data affecting sector complexity; the complexity evaluation module is used for evaluating sector complexity based on processing result of the data processing module; the early warning module is used for analysis and early warning according to sector complexity. In the invention, a mathematical model for evaluating air traffic complexity is established by adopting L-M neural network algorithm. Compared with the traditional neural network calculation method, the adopted method in the invention can calculate the result with high approximation accuracy and accurately evaluate the complexity. Airspace Complexity Evaluation System Based on Deep Leaminge Data Acquisition Module, Data Processing Modulev Complexity Evaluation Module<, Early Wamning Module<, Fig. 1 A schematic structural diagram of the airspace complexity evaluation system based on deep learning of the present invention.


    Access

    Download


    Export, share and cite



    Title :

    An Airspace Complexity Evaluation System Based on Deep Learning


    Contributors:
    SUN BO (author) / WEI MING (author) / TAN YINGJIA (author)

    Publication date :

    2021-04-22


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES , Systeme zum Steuern oder Regeln nichtelektrischer veränderlicher Größen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    A Deep Unsupervised Learning Approach for Airspace Complexity Evaluation

    Li, Biyue / Du, Wenbo / Zhang, Yu et al. | IEEE | 2022


    Deep unsupervised learning approach, device and storage medium for airspace complexity evaluation

    DU WENBO / CAO XIANBIN / LI BIYUE et al. | European Patent Office | 2024

    Free access

    DEEP UNSUPERVISED LEARNING APPROACH , DEVICE AND STORAGE MEDIUM FOR AIRSPACE COMPLEXITY EVALUATION

    DU WENBO / CAO XIANBIN / LI BIYUE et al. | European Patent Office | 2021

    Free access

    Airspace operation complexity evaluation method based on deep convolutional neural network

    XIE HUA / ZHANG MINGHUA / CHEN HAIYAN et al. | European Patent Office | 2021

    Free access