The invention discloses a Prophet-DCRNN traffic flow prediction method fusing multi-modal information, and belongs to the technical field of traffic flow prediction. Although an existing flow prediction method based on deep learning well captures time-space characteristics of traffic flow, actual urban traffic is affected by factors such as weather, holidays and festivals, and meanwhile, traffic jam tends to occur in severe weather, holidays and festivals. The provides the Prophet-DCRNN traffic flow prediction method fusing multi-modal information to overcome the defects of the prior art. The method uses a Prophet time sequence prediction algorithm to capture holiday effects, uses a DCRNN to capture traffic space-time characteristics, and in addition, based on a stacking-like technology, the Prophet algorithm, the DCRNN algorithm, holiday characteristics and weather information are fused, a hybrid model that finally fuses multi-modal information is obtained, so the accuracy of traffic prediction in festivals and holidays, severe weather and other scenes is realized.

    本发明公开了一种融合多模态信息的Prophet‑DCRNN交通流量预测方法,属于交通流量预测技术领域。现有基于深度学习的流量预测方法虽然很好的捕捉了交通流量的时空特性,然而,实际城市交通还受天气、节假日等因素的影响,同时往往在恶劣天气、节假日更倾向于出现交通拥堵。本发明的目的在于克服现有技术的不足,提供一种融合多模态信息的Prophet‑DCRNN交通流量预测方法,该方法利用Prophet时序预测算法捕获节假日效应,采用DCRNN捕获交通时空特性,此外基于类stacking技术,融合Prophet算法、DCRNN算法及节假日特性、天气信息,得到最终融合多模态信息的混合模型,实现了在节假日、恶劣天气等场景下交通预测的准确性。


    Access

    Download


    Export, share and cite



    Title :

    Prophet-DCRNN traffic flow prediction method fusing multi-modal information


    Additional title:

    一种融合多模态信息的Prophet-DCRNN交通流量预测方法


    Contributors:
    HOU WEIZHAO (author) / SONG KAILEI (author) / HAN ZHIZHUO (author) / CHEN XIAODONG (author) / JIN YABIN (author) / ZHANG ZHITAO (author) / ZANG YANJUN (author) / ZHAN KETONG (author) / XU YANG (author) / SU HUIJIE (author)

    Publication date :

    2021-07-02


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES



    Traffic speed prediction in the Lyon area using DCRNN (extended abstract)

    Mensi, Fabio / Furno, Angelo / Cazabet, Rémy | TIBKAT | 2020

    Free access

    Short - Term Traffic Prediction Using Fb-PROPHET and Neural-PROPHET

    ChikkaKrishna, Naveen Kumar / Rachakonda, Pranavi / Tallam, Teja | IEEE | 2022


    Fusing Visual Quantified Features for Heterogeneous Traffic Flow Prediction

    Qinyang WANG / Jing CHEN / Ying SONG et al. | DOAJ | 2024

    Free access

    ROAD TRAFFIC SPEED PREDICTION METHOD FUSING MULTI-FEATURE NEURAL NETWORK

    XING XUE | European Patent Office | 2024

    Free access

    Traffic volume prediction method of Prophet-DeepAR model

    GAO XUEYI / ZHOU JIANWEI / CI YUSHENG | European Patent Office | 2023

    Free access