The invention provides a traffic flow prediction method based on generative spatio-temporal evolution modeling. According to the method, a generative adversarial network is adopted to capture an evolution relationship between traffic nodes along with time, a multi-node traffic sequence is converted into two-dimensional plane data by using a Grubrum angle field, a node embedding combination arrangement generation matrix is constructed to simulate association arrangement of a global traffic network, and a global traffic condition characteristic graph representing a certain specific moment is generated. In the prediction problem solving process, the evolution relation of the traffic characteristics is learned through the generative adversarial network, the two-dimensional image representation of each traffic detection node is generated by using the Grubrum angle field, and the characteristic graphs of all time sequences are obtained. And generating input feature arrangement through node embedding and arrangement generation matrixes, and training a generative adversarial network to generate traffic sequence data of each node in a prediction period. The method fully considers the independence and interaction evolution relationship of the time sequence on each node, and has high prediction accuracy.

    本发明提出一种基于生成式时空演化建模的交通流量预测方法。该方法采用生成对抗网络来捕获交通节点之间随时间的演化关系,利用格拉姆角场将多节点交通序列转换为二维平面数据,并构建节点嵌入结合排布生成矩阵模拟全域交通网络的关联排布,生成表征某一特定时刻全域交通状况特征图。在预测问题的求解过程中,通过生成对抗网络对交通特征的演化关系进行学习,使用格拉姆角场生成每个交通侦测节点的二维图像表示,得到所有时间序列的特征图。通过节点嵌入和排布生成矩阵生成输入的特征排布,训练生成对抗网络生成预测时段的每个节点的交通序列数据。该方法充分考虑了每个节点上时间序列的独立以及交互演化关系,具有较高的预测准确性。


    Access

    Download


    Export, share and cite



    Title :

    Traffic flow prediction method based on generative spatio-temporal evolution modeling


    Additional title:

    一种基于生成式时空演化建模的交通流量预测方法


    Contributors:
    BAI XINKE (author) / SONG YUN (author) / DENG ZELIN (author) / FAN WENDONG (author) / LUO YU (author)

    Publication date :

    2023-06-09


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung



    Spatio-Temporal AutoEncoder for Traffic Flow Prediction

    Liu, Mingzhe / Zhu, Tongyu / Ye, Junchen et al. | IEEE | 2023


    Traffic flow prediction method for traffic flow spatio-temporal data information

    LIU PENG / CHU YUQUAN | European Patent Office | 2024

    Free access

    Short-term traffic flow prediction method based on spatio-temporal correlation

    QI YONG / XIONG TING / ZHANG WEIBIN et al. | European Patent Office | 2020

    Free access

    Global spatio‐temporal dynamic capturing network‐based traffic flow prediction

    Haoran Sun / Yanling Wei / Xueliang Huang et al. | DOAJ | 2023

    Free access

    Global spatio‐temporal dynamic capturing network‐based traffic flow prediction

    Sun, Haoran / Wei, Yanling / Huang, Xueliang et al. | Wiley | 2023

    Free access