The invention discloses a traffic flow prediction method based on a PSO (Particle Swarm Optimization)-Attention-LSTM (Long Short Term Memory) model. The method comprises the following steps: improving a traffic flow data prediction effect by adopting a long short-term memory (LSTM) network; an attention mechanism is introduced to learn the space relation between different traffic nodes, and the space dependency relation is captured; and optimizing parameters of the network model structure by using a particle swarm optimization (PSO) algorithm. Compared with the prior art, the method can maintain the accuracy of traffic flow prediction, and improves the prediction speed at the same time.

    本发明公开了一种基于PSO‑Attention‑LSTM模型的交通流预测方法;该方法包括:采用长短期记忆网络LSTM提高交通流数据预测效果;引入注意力机制学习不同交通节点之间的空间联系,捕捉空间依赖关系;利用粒子群优化算法PSO优化网络模型结构的参数。与现有技术相比,本发明可以保持交通流预测的准确性,同时提高预测速度。


    Access

    Download


    Export, share and cite



    Title :

    Traffic flow prediction method based on PSO-Attention-LSTM model


    Additional title:

    一种基于PSO-Attention-LSTM模型的交通流预测方法


    Contributors:
    YANG XIAOXIAN (author) / WEI YUTING (author) / WANG ZHIFENG (author) / WANG QI (author)

    Publication date :

    2023-09-15


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Traffic flow prediction method based on LSTM-Attention

    QIN XIAOLIN / LIU JIACHEN / SONG LIXIANG et al. | European Patent Office | 2021

    Free access

    Grid LSTM based Attention Modelling for Traffic Flow Prediction

    Biju, Rahul / Goparaju, Sai Usha / Gangadharan, Deepak et al. | IEEE | 2024


    Short-term traffic flow prediction model based on GWO-attention-LSTM

    Lan, Tianhe / Qu, Dayi / Chen, Kun et al. | SPIE | 2023


    Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction

    Li, Zhihong / Xu, Han / Gao, Xiuli et al. | Taylor & Francis Verlag | 2024


    Intersection traffic flow prediction method based on LSTM

    ZHANG HUI / LI ZHAOCHUAN / WANG GUANJUN et al. | European Patent Office | 2024

    Free access