The invention provides a neural network training method, a traffic flow prediction method, a traffic flow prediction device, equipment and a medium, and the method comprises the steps: determining a plurality of road communication networks contained in a target road network region, training a traffic flow prediction neural network of each road communication network through the traffic flow sample data of each road in each road communication network, and carrying out the training of the traffic flow prediction neural network. The method can achieve the decoupling of each road in a whole road network, reduces the interference of redundant roads, reduces the data volume, reduces the huge structure and complexity of a network structure, reduces the workload of a neural network in a data learning process, accelerates the training and learning efficiency of the neural network, reduces the time consumption of training and learning, and improves the training efficiency of the neural network in a use process. The traffic flow of the road can be predicted through the corresponding traffic flow prediction neural network, the used data volume is small, the data volume processing amount of the neural network is greatly reduced, the data processing time and the prediction time are effectively shortened, the data processing efficiency is high, and the accuracy is good.

    本公开提供了一种神经网络训练方法、交通流预测方法、装置、设备及介质,通过确定目标路网区域所包含的多个道路联通网,分别使用各个道路联通网中各条道路的交通流样本数据,来训练每个道路联通网自己的交通流预测神经网络,可以达到对整体路网中各个道路的解耦,减少多余道路的干扰,减少数据量以及减少网络结构的结构庞大和复杂度,减少神经网络在数据学习过程中的工作量,加快神经网络的训练和学习效率,减少训练和学习的时间消耗,在使用的过程中,可以通过相对应的交通流预测神经网络预测道路的交通流,使用数据量小,神经网络的数据量处理量也大大减少,有效缩短数据处理时间和预测时间,数据处理效率高,准确性好。


    Access

    Download


    Export, share and cite



    Title :

    Neural network training method, traffic flow prediction method, device, equipment and medium


    Additional title:

    神经网络训练方法、交通流预测方法、装置、设备及介质


    Contributors:
    ZHANG LINGYU (author) / ZHANG YING (author) / LIANG JIAN (author)

    Publication date :

    2024-01-23


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Hybrid neural network training method, traffic flow prediction method, equipment and medium

    SHI JUNQING / LI RUI / LI QING et al. | European Patent Office | 2022

    Free access

    Traffic flow prediction model training method, traffic flow prediction method, device and equipment

    GU JUNHUA / CHEN CHEN / LEI WEI et al. | European Patent Office | 2023

    Free access


    Traffic flow prediction method, device, equipment and medium

    HOU CHEN | European Patent Office | 2020

    Free access

    Training method and device of traffic flow prediction model, electronic equipment and storage medium

    JIANG RUIYUAN / JIA DONGYAO / DONG DAPENG et al. | European Patent Office | 2025

    Free access