The invention discloses a vehicle trajectory prediction method based on a spatial motion relation and a long-short time memory network, which takes the long-short time memory network as a basis of an encoder-decoder structure, and adds six-dimensional features (absolute positions, absolute speeds, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, absolute positions, according to the method, twelve-dimensional features (including relative position, relative speed and relative acceleration in the transverse direction and the longitudinal direction) under a dynamic coordinate system and six-dimensional features (relative position, relative speed and relative acceleration in the transverse direction and the longitudinal direction) under the dynamic coordinate system are obtained, and a space interaction relation graph attention network model between a target vehicle and surrounding traffic objects is established according to a braking relation between vehicles under a local view angle. And then training and extracting space influence distribution between the target vehicle and the surrounding traffic objects, thereby improving the accuracy of vehicle trajectory prediction. The vehicle dynamic space relation feature and socialization space relation extraction method is applied to vehicle track prediction, and the vehicle prediction effect in the intelligent driving environment is improved.
本发明公开了一种基于空间运动关系和长短时间记忆网络的车辆轨迹预测方法该方法以长短时间记忆网络为编码器‑解码器结构的基础,通过从输入端加入周围车辆静态坐标系下的六维特征(横向和纵向下的绝对位置,绝对速度,绝对加速度)和动态坐标系下的六维特征(横向和纵向下的相对位置,相对速度,相对加速度)总共十二维特征,并根据车辆之间在局部视角下的制动关系建立了目标车辆和周围交通对象之间空间交互关系图注意力网络模型。之后训练并提取目标车辆和周围交通对象之间的空间影响力分配,从而可以提升了车辆轨迹预测的准确度。将车辆动态空间关系特征和社会化空间关系提取方法应用于车辆轨迹预测,实现智能驾驶环境下的车辆预测效果提升。
Vehicle track prediction method based on spatial motion relation and long-short time memory network
一种基于空间运动关系和长短时间记忆网络的车辆轨迹预测方法
2024-01-30
Patent
Electronic Resource
Chinese
IPC: | G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung |
Vehicle track prediction method based on spatial motion relation and long-short time memory network
European Patent Office | 2024
|European Patent Office | 2022
|STG-LSTM: Spatial-temporal graph-based long short-term memory for vehicle trajectory prediction
DOAJ | 2025
|Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network
Online Contents | 2019
|