The invention discloses a short-term traffic flow prediction method and system based on a PSO-STGCN graph convolutional network, and relates to the technical field of intelligent traffic, and the method comprises the steps: obtaining historical traffic speed data at a plurality of moments, and carrying out the preprocessing of the data, and obtaining a training set, a test set, and a verification set; constructing a space-time graph convolutional network STGCN model according to the traffic flow matrix; optimizing parameters of the STGCN model by adopting a particle swarm optimization (PSO) algorithm; using the training set to train the optimized STGCN model; and performing traffic flow prediction by using the trained STGCN model to obtain a prediction result. According to the method, the PSO model and the STGCN model are combined, the defect of manually setting model parameters is overcome, the particle swarm optimization can capture the optimal parameters of the STGCN model, and the method has more remarkable influence on traffic flow prediction.

    本发明公开了一种基于PSO‑STGCN图卷积网络的短期交通流预测方法及系统,涉及智能交通技术领域,方法包括:获取多个时刻的历史交通速度数据,并对所述数据进行预处理,得到训练集、测试集和验证集;根据交通流矩阵,构建空间时间图卷积网络STGCN模型;采用粒子群优化PSO算法,对所述STGCN模型的参数进行优化;利用所述训练集对优化后的STGCN模型进行训练;利用训练好的STGCN模型进行交通流预测,得到预测结果。本发明将PSO与STGCN模型相结合,克服了手动设置模型参数的缺点,使粒子群算法能够捕获STGCN模型的最优参数,对交通流量预测具有更显著的影响。


    Access

    Download


    Export, share and cite



    Title :

    Short-term traffic flow prediction method and system based on PSO-STGCN graph convolutional network


    Additional title:

    一种基于PSO-STGCN图卷积网络的短期交通流预测方法及系统


    Contributors:
    WANG YAN (author) / ZHU FENG (author) / AHN YOUNG-TAE (author) / YANG YUE (author) / CHENG CHENG (author) / CHEN JIONGYI (author) / LI JIAYING (author)

    Publication date :

    2024-07-16


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES



    Short-Term Traffic Flow Prediction Based on Graph Convolutional Network Embedded LSTM

    Huang, Yanguo / Zhang, Shuo / Wen, Junlin et al. | TIBKAT | 2020


    Short-Term Traffic Flow Prediction Based on Graph Convolutional Network Embedded LSTM

    Huang, Yanguo / Zhang, Shuo / Wen, Junlin et al. | ASCE | 2020


    Short-term traffic flow prediction method based on integrated graph convolutional neural network

    LIU LUYANG / LYU SHUAIQI / BAO XU | European Patent Office | 2024

    Free access

    SHORT-TERM TRAFFIC FLOW PREDICTION METHOD BASED ON CAUSAL GATED-LOW-PASS GRAPH CONVOLUTIONAL NETWORK

    XU XING / MAO HAO / ZHAO YUN | European Patent Office | 2024

    Free access