The invention provides a traffic flow prediction method based on singular spectrum decomposition and SSA-BiLSTM, and the method is characterized in that the method comprises the following steps: S1, carrying out the data cleaning of historical traffic flow data, and obtaining the cleaned data; s2, performing singular spectrum analysis on the cleaned data to obtain a non-principal component sequence and a principal component sequence; s3, inputting the non-principal component sequence into the first SSA-BiLSTM network to obtain a noise prediction result; s4, inputting the principal component sequence into a second SSA-BiLSTM network to obtain a period prediction result; and S5, reconstructing the noise prediction result and the period prediction result to obtain a traffic flow prediction result. In a word, the method can obtain a more accurate traffic flow prediction result.

    本发明提供了一种基于奇异谱分解与SSA‑BiLSTM的交通流量预测方法,具有这样的特征,包括以下步骤:步骤S1,对历史交通流量数据进行数据清洗,得到清洗数据;步骤S2,将清洗数据进行奇异谱分析,得到非主成分序列和主成分序列;步骤S3,将非主成分序列输入第一SSA‑BiLSTM网络,得到噪声预测结果;步骤S4,将主成分序列输入第二SSA‑BiLSTM网络,得到周期预测结果;步骤S5,将噪声预测结果和周期预测结果进行重构,得到交通流量预测结果。总之,本方法能够得到更准确的交通流量预测结果。


    Access

    Download


    Export, share and cite



    Title :

    Traffic flow prediction method based on singular spectrum decomposition and SSA-BiLSTM


    Additional title:

    基于奇异谱分解与SSA-BiLSTM的交通流量预测方法


    Contributors:
    LEI YUHANG (author) / LEI JINGSHENG (author) / TANG XIAOLAN (author)

    Publication date :

    2024-10-22


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung



    Research on Traffic Flow Prediction Methods Based on EMD-BiLSTM

    Wu, Yuekai / Wang, Zhaoqi / Ren, Ziyao et al. | IEEE | 2025



    Attention-BiLSTM-based ship track prediction method

    YANG ZE / GUAN ZHENBO / GE XIANG et al. | European Patent Office | 2025

    Free access

    BiLSTM- and GNN-Based Spatiotemporal Traffic Flow Forecasting with Correlated Weather Data

    Abdullah Alourani / Farzeen Ashfaq / N. Z. Jhanjhi et al. | DOAJ | 2023

    Free access

    Short-Term Bus Passenger Flow Prediction Based on BiLSTM Neural Network

    Zhou, Xuemei / Wang, Qianlin / Zhang, Yunbo et al. | ASCE | 2025