The invention discloses a road network traffic space-time state uncertainty calculation method based on a graph convolution model. The method comprises the following steps: collecting historical traffic space-time data; constructing a road network traffic state point prediction model based on a DCRNN model; establishing a loss function method for describing accidental uncertainty, and performing traffic state uncertainty training on the road network traffic state point prediction model based on MC-Dropout of a Bayesian framework by using historical traffic spatio-temporal data to obtain a trained road network traffic state interval range prediction model; and inputting to-be-predicted traffic spatio-temporal data into the trained road network traffic state interval range prediction model to obtain a traffic state in a predicted time range. According to the method, the uncertainty of the traffic state is quantified more deeply and effectively by combining the deep learning technology and the Bayesian framework, and more flexible and comprehensive decision support is provided for traffic management and scheduling.

    本发明公开了一种基于图卷积模型的路网交通时空状态不确定性计算方法,包括:采集历史交通时空数据;基于DCRNN模型构建路网交通状态点预测模型;建立描述偶然不确定性的损失函数方法,并利用历史交通时空数据,基于贝叶斯框架的MC‑Dropout对路网交通状态点预测模型进行交通状态不确定性训练,获得训练好的路网交通状态区间范围预测模型;将待预测交通时空数据输入到训练好的路网交通状态区间范围预测模型中得到预测的时间范围内的交通状态。本发明通过结合深度学习技术和贝叶斯框架,更深入有效地量化交通状态的不确定性,为交通管理和调度提供更灵活和全面的决策支持。


    Access

    Download


    Export, share and cite



    Title :

    Road network traffic space-time state uncertainty calculation method based on graph convolution model


    Additional title:

    基于图卷积模型的路网交通时空状态不确定性计算方法


    Contributors:
    DING CHUAN (author) / ZHANG HONGLIANG (author) / SONG YINGJIE (author) / YU BIN (author) / LU GUANGQUAN (author)

    Publication date :

    2024-10-29


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Road network traffic flow prediction method based on gated loop graph convolution attention network

    REN YILONG / CHEN YUE / MA TIAN et al. | European Patent Office | 2023

    Free access

    Traffic flow prediction method based on interactive space enhanced graph convolution model

    LI QIN / XU PAI / ZHENG ZUOCAI et al. | European Patent Office | 2024

    Free access

    Urban traffic prediction method and device based on space-time mixed graph convolution

    GUO HAIFENG / XU HONGWEI / ZHOU ZISHENG | European Patent Office | 2023

    Free access

    Road section traffic flow prediction method based on time convolution neural network

    JIN SHENG / CHANG WEI | European Patent Office | 2020

    Free access

    Road traffic safety prediction method based on dynamic graph attention space-time network

    JIA ZHAOHONG / YUAN JIE / YANG BO | European Patent Office | 2024

    Free access