The invention relates to a CNN-GRU-Attention-based driving behavior prediction method, and belongs to the technical field of intelligent driving. The method comprises the following steps: acquiring a multi-modal physiological signal of a driver and a vehicle driving parameter in a driving process, and performing preprocessing; feature extraction and feature screening are carried out on the preprocessed physiological signals and the vehicle driving parameters, data calibration is carried out according to driving behaviors generated in the driving process, and then data samples are divided into a training set, a test set and a verification set; inputting a training set sample into the driving behavior prediction model, taking the multi-modal physiological signals and vehicle driving parameters as input, taking a driving behavior prediction result as output, continuously adjusting a network structure and parameters, training the driving behavior prediction model according to training loss and prediction precision, and visualizing a confusion matrix. After training is completed, verification set sample data are input into the model for driving behavior prediction. The driving behavior prediction accuracy is higher.

    本发明涉及一种基于CNN‑GRU‑Attention的驾驶行为预测方法,属于智能驾驶技术领域。其包括如下步骤:采集驾驶过程中驾驶员多模态生理信号与车辆行驶参数,进行预处理;对完成预处理的生理信号与车辆行驶参数进行特征提取、特征筛选,并根据驾驶过程中产生的驾驶行为进行数据标定,随后将数据样本划分为训练集、测试集、验证集;将训练集样本输入到驾驶行为预测模型中,以多模态生理信号与车辆行驶参数为输入,驾驶行为预测结果为输出,根据训练损失与预测精度,不断调整网络结构与参数,训练驾驶行为预测模型,并可视化混淆矩阵。完成训练后,将验证集样本数据输入模型中进行驾驶行为预测。本发明驾驶行为预测准确率更高。


    Access

    Download


    Export, share and cite



    Title :

    CNN-GRU-Attention-based driving behavior prediction method


    Additional title:

    一种基于CNN-GRU-Attention的驾驶行为预测方法


    Contributors:
    JIANG XINGYU (author) / SU HAIBO (author) / LI JIAZHEN (author) / ZHAO JUNJIE (author) / TIAN ZHIQIANG (author) / YANG GUOZHE (author)

    Publication date :

    2024-12-06


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / A61B DIAGNOSIS , Diagnostik / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung



    A Memory-Attention Hierarchical Model for Driving-Behavior Recognition and Motion Prediction

    Yin, Huilin / Wang, Jie / Lin, Jia et al. | Springer Verlag | 2021


    DADA: Driver Attention Prediction in Driving Accident Scenarios

    Fang, Jianwu / Yan, Dingxin / Qiao, Jiahuan et al. | IEEE | 2022


    AI-TP: Attention-Based Interaction-Aware Trajectory Prediction for Autonomous Driving

    Zhang, Kunpeng / Zhao, Liang / Dong, Chengxiang et al. | IEEE | 2023


    End-to-end automatic driving behavior planning method based on graph attention

    DING YONG / HAN HAO / CHENG HUAYUAN et al. | European Patent Office | 2024

    Free access

    Student risk prediction method based on driving behavior modeling

    ZHANG JIANLIN / ZHU XING | European Patent Office | 2025

    Free access