The invention discloses a traffic flow prediction model construction method based on a coupling multi-factor collaborative graph network, and the method comprises the steps: obtaining the traffic characteristic data of an urban road network, and carrying out the preprocessing, and obtaining the standardized traffic characteristic data; simulating the traffic network into a graph network according to the standardized traffic characteristic data; constructing a distance adjacency matrix, a node correlation matrix, an environment comfort matrix and a subjectivity matrix according to the graph network, and performing fusion to obtain a coupling multi-factor feature; according to the attention mechanism and the neural network, constructing a time-space model coupled with multi-factor feature collaboration; and training the space-time model, and performing evaluation to obtain a traffic flow prediction model. According to the traffic flow prediction model construction method based on the coupled multi-factor collaborative graph network provided by the invention, coupling spatial-temporal characteristics and complex scene factors are considered, so that the trained traffic flow prediction model can accurately predict the traffic flow in a multi-source complex scene.

    本申请公开了一种基于耦合多因子协同图网络的交通流量预测模型构建方法,通过获取城市路网的交通特征数据,并进行预处理,得到标准化交通特征数据;根据标准化交通特征数据将交通路网模拟为图网络;根据图网络构建距离邻接矩阵、节点相关性矩阵、环境舒适性矩阵和主观性矩阵,并进行融合,得到耦合多因子特征;根据注意力机制和神经网络构建耦合多因子特征协同的时空模型;训练时空模型,并进行评估,得到交通流量预测模型。本申请提供的基于耦合多因子协同图网络的交通流量预测模型构建方法考虑了耦合时空特征与复杂场景因素,因此训练出来的交通流量预测模型能够对多源复杂场景下的交通流量进行精确预测。


    Access

    Download


    Export, share and cite



    Title :

    Traffic flow prediction model construction method based on coupling multi-factor collaborative graph network


    Additional title:

    基于耦合多因子协同图网络的交通流量预测模型构建方法


    Contributors:
    CHEN CAI (author) / WANG JIAN (author) / XU DINGXIN (author) / LI DONG (author) / ZHONG HUA (author) / JU XUWEI (author) / YANG YAOTING (author)

    Publication date :

    2025-01-28


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES



    Traffic flow prediction method based on multi-model network coupling

    LEE WON-JUN / CHEN CHUANMING / YANG TAO et al. | European Patent Office | 2024

    Free access

    Traffic flow prediction method based on multi-view dynamic graph convolutional network

    HUANG XIAOHUI / YE YUMING / LING JIAHAO et al. | European Patent Office | 2022

    Free access

    Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction

    Lv, Mingqi / Hong, Zhaoxiong / Chen, Ling et al. | IEEE | 2021


    Traffic flow prediction method based on graph convolutional network

    XU HUI / MENG FANYU / REN QIANQIAN et al. | European Patent Office | 2025

    Free access

    Traffic flow prediction method based on graph neural network

    PENG LAIHU / WU BAOWEN / QI YUBAO et al. | European Patent Office | 2024

    Free access