The invention discloses a bus travel time prediction method based on a space-time diagram attention network, and the method comprises the steps: carrying out the preprocessing of bus arrival time data, including bus number definition, duplicate record deletion, abnormal record deletion and missing record restoration; calculating the interval travel time of each train number based on the bus arrival time data to obtain the average travel time of each interval in different time periods; constructing a directed network by taking midpoints of the station intervals as nodes of the network and connecting lines between the midpoints of the station intervals as edges of the network, and fusing a distance matrix and a communication matrix of the nodes to represent spatial features between the nodes so as to weight the network of the station intervals; the historical average travel time of the station interval and the travel time of the latest train number serve as input, a transfomrer encoder, a graph attention network and a full connection layer are adopted to build a space-time graph attention network, time features and space features are extracted and fused, and multi-step prediction of the travel time of the station interval is achieved. According to the invention, more accurate bus travel time prediction can be realized.

    本发明公开了基于时空图注意力网络的公交行程时间预测方法,包括:对公交到站时间数据预处理,包括车次定义、重复记录删除、异常记录删除和缺失记录修复;基于公交到站时间数据计算每个车次的区间行程时间,得到每个区间不同时间段的平均行程时间;以站点区间的中点为网络的节点,以站点区间中点之间的连线为网络的边,构建有向网络,融合节点的距离矩阵和连通矩阵表征节点之间的空间特征对站点区间网络加权;以站点区间历史平均行程时间和最近车次的行程时间为输入,采用transfomrer的编码器、图注意力网络、全连接层搭建时空图注意力网络,提取并融合时间特征和空间特征,实现对站点区间行程时间的多步预测,本发明可以实现更精准的公交行程时间预测。


    Access

    Download


    Export, share and cite



    Title :

    Bus travel time prediction method based on space-time diagram attention network


    Additional title:

    基于时空图注意力网络的公交行程时间预测方法


    Contributors:
    LIN PENGFEI (author) / ZHAO SHICHANG (author) / OUYANG YINUO (author) / WENG JIANCHENG (author) / LIN DAORUI (author) / ZHOU ZHIYUAN (author)

    Publication date :

    2025-03-14


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Traffic flow prediction method based on time-space diagram attention neural network

    LI BAILIN / WEN MI | European Patent Office | 2025

    Free access

    Traffic flow prediction method of attention-based deep residual space-time diagram convolutional network

    XU SHIJIAN / ZHANG XUHONG / WU YUEDONG et al. | European Patent Office | 2023

    Free access

    Traffic flow speed prediction method based on attention space-time diagram convolutional network

    SUN YONG / ZHANG ANQIN / CHEN JINGJING | European Patent Office | 2023

    Free access

    Transfer perception-based time-space diagram attention network traffic flow prediction method and system

    ZHOU YAN / WANG XIAODI / JIA JIPENG et al. | European Patent Office | 2025

    Free access

    Ship traffic flow prediction method based on improved space-time diagram attention neural network

    JIANG BAODE / LUO HAIYAN / SONG YUWEI | European Patent Office | 2023

    Free access