A system (100) for controlling a vehicle (10) includes a processor (104) configured to execute instructions stored on a non-transitory computer readable medium (106). The system also includes a sensor (112) coupled to the processor and configured to receive sensory input (202). The system also includes a controller (102) coupled to the processor and configured to control the vehicle. The processor is further configured to: create a synthetic image (204, 308) based on the sensory input; derive a deep reinforcement learning (RL) policy (206, 314) using the synthetic image, wherein the deep RL policy determines a longitudinal control for the vehicle (316); and instruct the controller to control the vehicle based on the deep RL policy (208, 316).


    Access

    Download


    Export, share and cite



    Title :

    DEEP REINFORCEMENT LEARNING FOR A GENERAL FRAMEWORK FOR MODEL-BASED LONGITUDINAL CONTROL


    Additional title:

    TIEFENVERSTÄRKUNGSLERNEN FÜR EINEN ALLGEMEINEN RAHMEN ZUR MODELLBASIERTEN LÄNGSREGELUNG
    APPRENTISSAGE PAR RENFORCEMENT PROFOND POUR UNE STRUCTURE GÉNÉRALE DE COMMANDE LONGITUDINALE SUR LA BASE DE MODÈLE


    Contributors:

    Publication date :

    2020-01-15


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES , Systeme zum Steuern oder Regeln nichtelektrischer veränderlicher Größen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    DEEP REINFORCEMENT LEARNING FOR A GENERAL FRAMEWORK FOR MODEL-BASED LONGITUDINAL CONTROL

    PATHAK SHASHANK / BAG SUVAM / NADKARNI VIJAY JAYANT | European Patent Office | 2020

    Free access

    Robust Longitudinal Control for Vehicular Platoons Using Deep Reinforcement Learning

    Alves Neto, Armando / Mozelli, Leonardo Amaral | IEEE | 2024



    Longitudinal Control and Optimization of Fixed-Wing UAV Based on Deep Reinforcement Learning

    He, Haiyang / Zhao, Zhengen / Kong, Fei | Springer Verlag | 2025


    Driver longitudinal car-following behavior model construction method based on deep reinforcement learning

    GUO JINGHUA / LI WENCHANG / WANG JINGYAO et al. | European Patent Office | 2021

    Free access