Methods, systems, and devices for dataset simplification of N-dimensional signals captured for asset tracking are provided. An example method involves obtaining raw data from a data source onboard an asset and determining whether obtainment of the raw data results in satisfaction of a data logging trigger. The method further involves, when the data logging trigger is satisfied, performing a dataset simplification algorithm on a target set of data within the raw data to generate a simplified set of data, wherein the target set of data contains a time-variant N-dimensional signal, N >=1, and the dataset simplification algorithm is generalized for all N >= 1. The method further involves transmitting the simplified set of data to a server.


    Access

    Download


    Export, share and cite



    Title :

    DATASET SIMPLIFICATION OF N-DIMENSIONAL SIGNALS CAPTURED FOR ASSET TRACKING


    Additional title:

    DATENSATZVEREINFACHUNG VON N-DIMENSIONALEN SIGNALEN, DIE FÜR DIE VERFOLGUNG VON VERMÖGENSWERTEN EFASST WERDEN
    SIMPLIFICATION DES ENSEMBLES DE DONNÉES DES SIGNAUX N-DIMENSIONNELS CAPTURÉS POUR LE SUIVI DES ACTIFS


    Contributors:

    Publication date :

    2021-12-22


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    DATASET SIMPLIFICATION OF MULTIDIMENSIONAL SIGNALS CAPTURED FOR ASSET TRACKING

    BJORKENGREN ULF | European Patent Office | 2021

    Free access

    IMAGE PROCESSING OF DRONE-CAPTURED IMAGE FOR ASSET MANAGEMENT

    DESELL TRAVIS JAMES | European Patent Office | 2024

    Free access

    ASSET TRACKING AND ASSET MANAGEMENT

    CASEY SIMON | European Patent Office | 2021

    Free access

    Asset tracking system

    ANTHONY J DIVALERIO III / RICHARD O WARTHER | European Patent Office | 2022

    Free access

    Topological Simplification of Signals for Inference and Approximate Reconstruction

    Koplik, Gary / Borggren, Nathan / Voisin, Sam et al. | IEEE | 2023