A method is provided for rule creation that includes receiving (i) a MDP model with a set of states, a set of actions, and a set of transition probabilities, (ii) a policy that corresponds to rules for a rule engine, and (iii) a set of candidate states that can be added to the set of states. The method includes transforming the MDP model to include a reward function using an inverse reinforcement learning process on the MDP model and on the policy. The method includes finding a state from the candidate states, and generating a refined MDP model with the reward function by updating the transition probabilities related to the state. The method includes obtaining an optimal policy for the refined MDP model with the reward function, based on the reward policy, the state, and the updated probabilities. The method includes updating the rule engine based on the optimal policy.
Rule creation using MDP and inverse reinforcement learning
2021-01-26
Patent
Electronic Resource
English
IPC: | G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES , Systeme zum Steuern oder Regeln nichtelektrischer veränderlicher Größen / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung |
Rule creation using MDP and inverse reinforcement learning
European Patent Office | 2021
|NEW RULE CREATION USING MDP AND INVERSE REINFORCEMENT LEARNING
European Patent Office | 2018
|NEW RULE CREATION USING MDP AND INVERSE REINFORCEMENT LEARNING
European Patent Office | 2018
|Curricular Subgoals for Inverse Reinforcement Learning
IEEE | 2025
|