A computer-implemented method of dynamically generating a charger map for electric vehicle (EV) charger locations. The method includes providing one or more parameters for a plurality of target areas to a machine learning (ML) model. The ML model is iteratively trained to identify relationships between the parameters using historical data corresponding to the plurality of target areas. One or more target parameters for a user-specific target area are received along with one or more user-specific weights representing one or more prioritized charging features associated with the user-specific target area. A charger map is generated via the trained ML model for the user-specific target area including one or more locations for EV chargers within the user-specific target area. The charger map is optimized relative to the one or more prioritized charging features.
Techniques for identifying optimal EV charging station locations
2023-10-03
Patent
Electronic Resource
English
IPC: | G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60L PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES , Antrieb von elektrisch angetriebenen Fahrzeugen / G01C Messen von Entfernungen, Höhen, Neigungen oder Richtungen , MEASURING DISTANCES, LEVELS OR BEARINGS / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES |
Systems and methods for identifying and merging repetitive charging station locations
European Patent Office | 2024
|Identifying Optimal Locations for Speed Enforcement Cameras
Transportation Research Record | 2022
|NTRS | 1974
|