Growing cities and increasing traffic densities result in an increased demand for applications such as traffic monitoring, traffic analysis, and support of rescue work. These applications share the need for accurate detection of relevant vehicles, e.g. in aerial imagery. Recently, the application of deep learning based detection frameworks like Faster R-CNN clearly outperformed conventional detection methods for vehicle detection in aerial images. In this paper, we propose a detection framework that fuses Faster R-CNN and semantic labeling to integrate contextual information. We achieve an improved detection performance by decreasing the number of false positive detections while the number of candidate regions to classify is reduced. To demonstrate the generalization of our approach, we evaluate our detection framework for various ground sampling distances on a publicly available dataset.
Semantic labeling for improved vehicle detection in aerial imagery
2017
2017
6 pages
Conference paper
Electronic Resource
Unknown
Deep Learning based Vehicle Detection in Aerial Imagery
GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2022
|