A fractional-order optimization method based on generalized perturbation matrix of GM(r,2) is proposed in this article. The smaller the perturbation bound, the more stable the model. By minimizing perturbation bound, a generalized perturbation matrix is given, which is the solving equation of the optimized fractional order. With different coefficients $\delta $ , different fractional orders can be calculated by a linear equation in one variable. Maximum relative error (RE) $e_{M}$ and mean absolute percentage error (MAPE) with different fractional orders can be obtained. Based on the smallest $e_{M}$ and the MAPE, the optimized fractional order of GM(r,2) can be determined. Compared with particle swarm optimization (PSO) and long short-term memory (LSTM) network transfer learning optimization methods, the MAPE of the proposed method is much smaller than that of PSO and slightly greater than LSTM network transfer learning optimization. The proposed method is superior to others without iteration calculation, and the convergence problem of PSO and the computational burden problem of transfer learning based on LSTM network optimization can be further improved. A GM(r,2) with optimized fractional order $r_{\mathrm { opt}}$ is evaluated in inferring driving intention of an active collision avoidance system for electric vehicles. Car-following simulations are performed to demonstrate the effectiveness of the proposed fractional-order optimization method with simple structure and flexible implementation.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Generalized Perturbation Matrix-Based Fractional-Order Optimization Method of GM(r,2) for Inferring Driving Intention


    Contributors:
    Lian, Yufeng (author) / Xu, Jianqiang (author) / Luo, Jun (author) / Nie, Zhigen (author) / Liu, Shuaishi (author) / Sun, Zhongbo (author)


    Publication date :

    2025-06-01


    Size :

    6080461 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Method, system and equipment for inferring driving behavior intention of surrounding vehicles

    REN YUANYUAN / LI YUANZHAO / ZHENG XUELIAN et al. | European Patent Office | 2024

    Free access

    Inferring Spacecraft Maneuver Intention via Inverse Optimal Control

    Goulet, Mikayla R. / Goulet, Timothy / LeGrand, Keith A. et al. | AIAA | 2025


    Driving intention recognition method

    ZHANG JIQI / CHEN ENZE / PANG JIANGNAN et al. | European Patent Office | 2024

    Free access

    Driving intention recognition

    GLÄSER STEFAN / ENGEL MONIQUE | European Patent Office | 2024

    Free access