Learning-enabling components are increasingly popular in many aerospace applications, including satellite pose estimation. However, as input distributions evolve over a mission lifetime, it becomes challenging to maintain performance of learned models. In this work, we present an open-source benchmark of a satellite pose estimation model trained on images of a satellite in space and deployed in novel input scenarios (e.g., different backgrounds or misbehaving pixels). We propose a framework to incrementally retrain a model by selecting a subset of test inputs to label, which allows the model to adapt to changing input distributions. Algorithms within this framework are evaluated based on (1) model performance throughout mission lifetime and (2) cumulative costs associated with labeling and model retraining. We also propose a novel algorithm to select a diverse subset of inputs for labeling, by characterizing the information gain from an input using Bayesian uncertainty quantification and choosing a subset that maximizes collective information gain using concepts from batch active learning. We show that our algorithm outperforms others on the benchmark, e.g., achieves comparable performance to an algorithm that labels 100% of inputs, while only labeling 50% of inputs, resulting in low costs and high performance over the mission lifetime.
Data Lifecycle Management in Evolving Input Distributions for Learning-Based Aerospace Applications
2023-03-04
4398958 byte
Conference paper
Electronic Resource
English
A FRAMEWORK FOR ACHIEVING LIFECYCLE VALUE IN AEROSPACE PRODUCT DEVELOPMENT
DSpace@MIT | 2002
|A Framework for Achieving Lifecycle Value in Aerospace Product Development
DSpace@MIT | 2001
|Information lifecycle management as data protection
British Library Online Contents | 2005