Assigning radio resources in advance to nonrealtime (NRT) service in a proactive manner can exploit residual resource after serving realtime service to boost the performance of wireless networks. By predicting future average data rate of each mobile user requesting NRT service in a time window, either directly or indirectly, a plan for assigning future resources to each user can be made. Most existing works make the plan by solving optimization problems, which require high computational complexity when the number of users is large and the prediction window in long. In this paper, we design a deep neural network (DNN), which contains an autoencoder and a fully-connected neural network, to learn the resource allocation pattern in a prediction window. With the help of the DNN trained offline, the plan can be made with low complexity. To increase the generalizability to time-varying traffic load for both NRT and realtime services, we resort to selective sampling in active learning. Simulation results show that the proposed method performs closely to the optimal solution in supporting high throughput with given quality of service requirement.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Predictive Resource Allocation with Deep Learning


    Contributors:
    Guo, Jia (author) / Yang, Chenyang (author)


    Publication date :

    2018-08-01


    Size :

    415182 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English




    Deep Reinforcement Learning-Based Resource Allocation for Cellular V2X Communications

    Chung, Yi-Ching / Chang, Hsin-Yuan / Chang, Ronald Y. et al. | IEEE | 2023


    Deep Reinforcement Learning Framework for Joint Resource Allocation in Heterogeneous Networks

    Zhang, Yong / Kang, Canping / Teng, YingLei et al. | IEEE | 2019


    Deep Reinforcement Learning based Dynamic Resource Allocation Method for NOMA in AeroMACS

    Yu, Lanchenhui / Zhao, Jingjing / Zhu, Yanbo et al. | IEEE | 2024


    Deep Q-Learning Based Resource Allocation in 6G Interference Systems With Outage Constraints

    Alam, Saniul / Islam, Sadia / Khandaker, Muhammad R. A. et al. | IEEE | 2023