We address the classical bearings-only tracking problem (BOT) for a single object, which belongs to the general class of nonlinear filtering problems. Recently, algorithms based on sequential Monte-Carlo methods (particle filtering) have been proposed. As far as performance analysis is concerned, the posterior Cramer-Rao bound (PCRB) provides a lower bound on the mean square error. Classically, under a technical assumption named "asymptotic unbiasedness assumption", the PCRB is given by the inverse Fisher information matrix (FIM). The latter is computed using Tichavsky's recursive formula via Monte-Carlo methods. Two major problems are studied here. First, we show that the asymptotic unbiasedness assumption can be replaced by an assumption which is more meaningful. Second, an exact algorithm to compute the PCRB is derived via Tichavsky's recursive formula without using Monte-Carlo methods. This result is based on a new coordinate system named logarithmic polar coordinate (LPC) system. Simulation results illustrate that PCRB can now be computed accurately and quickly, making it suitable for sensor management applications


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Closed-form posterior Cramer-Rao bounds for bearings-only tracking


    Contributors:


    Publication date :

    2006-10-01


    Size :

    3906905 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English