Thermal management of power electronics in electrified vehicles is critical for ensuring robust functionality during a vehicle’s transient operation. For high-power converters, liquid cooling is often necessary to maintain the device’s junction below its critical temperature. Usually the manufacturer’s datasheet for liquid cold plates is used to create thermal models, but this method has some shortcomings. The data provided is generally measured at steady-state and assumes uniform heating on the surface; however, this scenario is not representative of the in-situ operation. To overcome these discrepancies, this paper introduces an experimental method designed to accurately measure the case temperature of individual devices on a cold plate. This allows for temporal temperature characterization of localized heating on the cold plate by power devices. Also, a thermal model is created to predict the MOSFET junction temperatures at various power dissipations based on the experimentally validated case temperatures.
Performance Evaluation of Thermal Management for a 3-Phase Interleaved DC-DC Boost Converter
2018-06-01
9312788 byte
Conference paper
Electronic Resource
English
Interleaved Boost Converter with Zero Diode Reverse-Recovery Loss
Online Contents | 2004
|