The development of sensor technology has resulted in the accumulation of extensive spatiotemporal traffic information, which holds great potential for predicting traffic patterns and improving traffic management strategies. Nevertheless, dealing with missing data poses a significant challenge for the intelligent traffic system (ITS). To address this issue, this study employs a nonconvex smoothly clipped absolute deviation (SCAD) penalty customized for tensors to surrogate tensor rank and incorporates the deep plug-and-play (PnP) prior into the low-rank tensor completion (LRTC) model. An efficient iterative framework is formulated to integrate these penalties into the alternating direction method of multipliers (ADMM) method. Moreover, two imputation methods, namely LRTC-SCAD and LRTC-SCAD-DeepPnP, are developed, affirming that the LRTC-SCAD method ensures convergence to the global optimum. We conduct simulated experiments using real-world traffic datasets, and our proposed methods outperform state-of-the-art imputation methods. For instance, on the Portland dataset, LRTC-SCAD achieves a noteworthy 9.86% improvement in mean absolute percentage error (MAPE) compared to the cutting-edge LRTC method while consuming only 28.26% of its total running time. Similarly, on the PeMS dataset, LRTC-SCAD-DeepPnP achieves an average 11.59% enhancement in MAPE, with visually compelling improvements in imputation results, further validating its efficacy in maintaining local consistency. The code is available at https://github.com/peterchen96/LRTC_DeepPnP.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Low-Rank and Deep Plug-and-Play Priors for Missing Traffic Data Imputation


    Contributors:
    Chen, Peng (author) / Li, Fang (author) / Wei, Deliang (author) / Lu, Changhong (author)


    Publication date :

    2025-02-01


    Size :

    6242229 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Convolutional Low-Rank Tensor Representation for Structural Missing Traffic Data Imputation

    Li, Ben-Zheng / Zhao, Xi-Le / Chen, Xinyu et al. | IEEE | 2024



    Missing traffic data: comparison of imputation methods

    Li, Yuebiao / Li, Zhiheng / Li, Li | Wiley | 2014

    Free access

    Missing traffic data: comparison of imputation methods

    Li, Yuebiao / Li, Zhiheng / Li, Li | IET | 2014

    Free access

    A Comprehensive Survey on Traffic Missing Data Imputation

    Zhang, Yimei / Kong, Xiangjie / Zhou, Wenfeng et al. | IEEE | 2024