Unmanned ground vehicle (UGV) autonomous navigation in unknown indoor environments is a challenging task. The simultaneous use of the Gmapping algorithm, D*Lite algorithm and timed elastic bands (TEB) algorithm is proposed to accomplish the task as indicated above. Compared to traditional methods of separating mapping and navigation, the above method can reduce exploration and planning time while increasing the navigation efficiency of the UGV. Additionally, the planned paths are safer, more real-time, and more precise. In order to access better map building results and more suitable paths, this paper has made improvements to the traditional Gmapping algorithm and the D*Lite algorithm. By using simulation and real vehicle experiments, we demonstrate the validity and timeliness of the complete method.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Unmanned Ground Vehicle Autonomous Navigation in Unknown Indoor Environments


    Contributors:
    Xie, Mengjiao (author) / Song, Chunlei (author) / Wang, Jiahui (author) / Wu, Xiaohui (author) / Li, Man (author) / Xu, Jianhua (author)


    Publication date :

    2023-05-26


    Size :

    2133485 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Autonomous Flight in Unknown Indoor Environments

    Bachrach, Abraham Galton / He, Ruijie / Roy, Nicholas | DSpace@MIT | 2009

    Free access

    Autonomous Flight in Unknown Indoor Environments

    Bachrach, Abraham / He, Ruijie / Roy, Nicholas | SAGE Publications | 2009

    Free access

    Autonomous Wall-Following Based Navigation of Unmanned Aerial Vehicles in Indoor Environments

    Nemati, Alireza / Sarim, Mohammad / Hashemi, Mehdi et al. | AIAA | 2015