This paper revisits the construction of principal curves. Although they have a solid theoretical foundation as a nonlinear extension to principal components, this paper shows that they are difficult to implement in practice if the data distribution is sparse and uneven or if the data contain outliers. These issues may hamper the application of principal curves to an intelligent transportation system. To address these problems, this paper introduces an adaptive constraint K-segment principal curve (ACKPC) algorithm that can be applied in the presence of uneven and sparse distributions, as well as outliers. The benefits of the ACKPC algorithm are as follows: (1) It utilizes predefined endpoints of the curve to reduce the computational effort, and (2) it shows to be less sensitive to parameter settings and outliers. These benefits are demonstrated using two benchmark studies and experimental data from a freeway traffic stream system as well as recorded data from a Global Positioning System (GPS) data from a low-precision GPS receiver.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Adaptive Constraint K-Segment Principal Curves for Intelligent Transportation Systems


    Contributors:
    Junping Zhang, (author) / Dewang Chen, (author) / Kruger, U. (author)


    Publication date :

    2008-12-01


    Size :

    1209282 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Robust Inference of Principal Road Paths for Intelligent Transportation Systems

    Agamennoni, G / Nieto, J I / Nebot, E M | IEEE | 2011


    Deck segment transportation method

    SUN HAIYUN / NIE XIANG / ZHANG HAIYONG et al. | European Patent Office | 2025

    Free access

    Deck segment transportation device

    SUN HAIYUN / NIE XIANG / ZHANG HAIYONG et al. | European Patent Office | 2025

    Free access