In active rollover prevention systems, a real-time rollover index, which indicates the likelihood of the vehicle to roll over, is used. This paper focuses on state and parameter estimation for reliable computation of the rollover index. Two key variables that are difficult to measure and play a critical role in the rollover index are found to be the roll angle and the height of the center of gravity of the vehicle. Algorithms are developed for real-time estimation of these variables. The algorithms investigated include a sensor fusion algorithm and a nonlinear dynamic observer. The sensor fusion algorithm requires a low-frequency tilt-angle sensor, whereas the dynamic observer utilizes only a lateral accelerometer and a gyroscope. The stability of the nonlinear observer is shown using Lyapunov's indirect method. The performance of the developed algorithms is investigated using simulations and experimental tests. Experimental data confirm that the developed algorithms perform reliably in a number of different maneuvers that include constant steering, ramp steering, double lane change, and sine with dwell steering tests.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Parameter and State Estimation in Vehicle Roll Dynamics


    Contributors:


    Publication date :

    2011-12-01


    Size :

    537019 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Vehicle sideslip and roll parameter estimation using GPS

    Ryu, J. / Rossetter, E.J. / Gerdes, J.C. | Tema Archive | 2002


    State and Parameter Estimation for Vehicle Dynamics

    Naets, Frank | Springer Verlag | 2021


    Vehicle roll centre estimation with transient dynamics via roll rate

    Zhang, Xinjie / Yan, Yipeng / Guo, Konghui et al. | Taylor & Francis Verlag | 2022