At the heart of all automated driving systems is the ability to sense the surroundings, e.g., through semantic segmentation of LiDAR sequences, which experienced a remarkable progress due to the release of large datasets such as SemanticKITTI and nuScenes-LidarSeg. While most previous works focus on sparse segmentation of the LiDAR input, dense output masks provide self-driving cars with almost complete environment information. In this paper, we introduce MASS - a Multi-Attentional Semantic Segmentation model specifically built for dense top-view understanding of the driving scenes. Our framework operates on pillar- and occupancy features and comprises three attention-based building blocks: (1) a keypoint-driven graph attention, (2) an LSTM-based attention computed from a vector embedding of the spatial input, and (3) a pillar-based attention, resulting in a dense 360° segmentation mask. With extensive experiments on both, SemanticKITTI and nuScenes-LidarSeg, we quantitatively demonstrate the effectiveness of our model, outperforming the state of the art by 19.0% on SemanticKITTI and reaching 30.4% in mIoU on nuScenes-LidarSeg, where MASS is the first work addressing the dense segmentation task. Furthermore, our multi-attention model is shown to be very effective for 3D object detection validated on the KITTI-3D dataset, showcasing its high generalizability to other tasks related to 3D vision.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    MASS: Multi-Attentional Semantic Segmentation of LiDAR Data for Dense Top-View Understanding


    Contributors:


    Publication date :

    2022-09-01


    Size :

    6020582 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Exploiting Multi-Layer Grid Maps for Surround-View Semantic Segmentation of Sparse LiDAR Data

    Bieder, Frank / Wirges, Sascha / Janosovits, Johannes et al. | IEEE | 2020


    TransRVNet: LiDAR Semantic Segmentation With Transformer

    Cheng, Hui-Xian / Han, Xian-Feng / Xiao, Guo-Qiang | IEEE | 2023


    Supervised Learning for Semantic Segmentation of 3D LiDAR Data

    Mei, Jilin / Chen, Jiayu / Yao, Wen et al. | IEEE | 2019


    M2S-RoAD: Multi-Modal Semantic Segmentation for Road Damage Using Camera and LiDAR Data

    Tseng, Tzu-Yun / Lyu, Hongyu / Li, Josephine et al. | ArXiv | 2025

    Free access