The prediction of both, vehicular traffic and communication connectivity are important research topics. In this paper, we propose the usage of innovative machine learning approaches for these objectives. For this purpose, Poisson Dependency Networks (PDNs) are introduced to enhance the prediction quality of vehicular traffic flows. The machine learning model is fitted based on empirical vehicular traffic data. The results show that PDNs enable a significantly better short-term prediction in comparison to a prediction based on the physics of traffic. To combine vehicular traffic with cellular communication networks, a correlation between connectivity indicators and vehicular traffic flow is shown based on measurement results. This relationship is leveraged by means of Poisson regression trees in both directions, and hence, enabling the prediction of both types of network utilization.
LTE Connectivity and Vehicular Traffic Prediction Based on Machine Learning Approaches
2015-09-01
2590513 byte
Conference paper
Electronic Resource
English
Traffic Flow Breakdown Prediction using Machine Learning Approaches
Transportation Research Record | 2020
|