The exploration of the potential correlations of traffic conditions between roads in large urban networks, which is of profound importance for achieving accurate traffic prediction, often implies high computational complexity due to the implicated network topology. Hence, focal methods are required for dealing with the urban network complexity, reducing the performance requirements that are associated to the classical network search techniques (e.g., Breadth First Search). This paper introduces a graph-theory-based technique for managing spatial dependence between roads of the same network. In particular, after representing the traffic network as a graph, the local neighbors of each road are extracted using Breadth First Search graph traversal algorithm and a lower complexity variant of it. A Pearson product–moment correlation-coefficient-based metric is applied on the selected graph nodes for a prescribed number of level sets of neighbors. In order to evaluate the impact of the new method to the traffic prediction accuracy achieved, the most correlated roads are used to build a STARIMA model, taking also into account the possible time delays of traffic conditions between the interrelated roads. The proposed technique is benchmarked using traffic data from two different cities: Berlin, Germany, and Thessaloniki, Greece. Benchmark results not only indicate significant improvement on the computational time required for calculating traffic correlation metric values but also reveal that a different variant works better in different network topologies, after comparison to third-party approaches.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Managing Spatial Graph Dependencies in Large Volumes of Traffic Data for Travel-Time Prediction




    Publication date :

    2016-06-01


    Size :

    1539743 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English