Predicting taxi demand throughout a city can help to organize the taxi fleet and minimize the wait-time for passengers and drivers. In this paper, we propose a sequence learning model that can predict future taxi requests in each area of a city based on the recent demand and other relevant information. Remembering information from the past is critical here, since taxi requests in the future are correlated with information about actions that happened in the past. For example, someone who requests a taxi to a shopping center, may also request a taxi to return home after few hours. We use one of the best sequence learning methods, long short term memory that has a gating mechanism to store the relevant information for future use. We evaluate our method on a data set of taxi requests in New York City by dividing the city into small areas and predicting the demand in each area. We show that this approach outperforms other prediction methods, such as feed-forward neural networks. In addition, we show how adding other relevant information, such as weather, time, and drop-offs affects the results.
Real-Time Prediction of Taxi Demand Using Recurrent Neural Networks
IEEE Transactions on Intelligent Transportation Systems ; 19 , 8 ; 2572-2581
2018-08-01
3286388 byte
Article (Journal)
Electronic Resource
English
Real-Time Taxi Demand Prediction using data from the web
IEEE | 2018
|Taxi Demand Prediction Using LSTM and Optimized Taxi Geo-distribution
Springer Verlag | 2021
|Taxi Passengers Demand Prediction Using Deep Learning
TIBKAT | 2017
|